

Pt1000-SMD1206 series

• SMD type thin film platinum resistor is a universal temperature sensor

component with the advantages of small volume, wide temperature measurement range, good long-term stability, and high structural strength.

Compared to NTC products, SMD thin film platinum resistors have the advantages of high s strength, high output linearity, good repeatability, and high temperature measurement accuracy.

Compared to lead type thin film platinum resistors, the cost is significantly reduced, and various welding processes such as tin soldering, reflow soldering, and wave soldering can be used, greatly expanding the application range.

· Widely used in fields such as instrumentation, household appliances, new

Reflow soldering or wave soldering, recommended to use high-

temperature solder paste, welding temperature 230-240 ° C

MAIN FEATURES

Front and back penetrating electrodes Thermal sensitive thin film Ceramic substrate

*The nominal resistance measurement point is 8mm away from the component body

INDEX

y	energy vehicles, and electronic equipment.					
	Performance parameters	SMD type thin film platinum resistor	_			
CAL	Lead specifications	3.2mmx1.6mmx0.7mm 1000Ω				
	R0°C resistance value					
	Temperature coefficient (TCR)	3850ppm/°C	_			
	Measuring range	-50°C~+200°C	_			
	Long term stability	Drift of R0 $^{\circ}$ C within 200 $^{\circ}$ C and 1000 hours $\leq 0.04\%$	_			
	Welding terminals	Tin alloy terminals				

•

Resistance temperature characteristics

Welding method

Temperature (°C)	Resistance(Ω)	Temperature (°C)	$\text{Resistance}(\Omega)$	Temperature (°C)	$\text{Resistance}(\Omega)$	Temperature (°C)	Resistance(Ω)
-20	921.6	40	1155.41	100	1385.06	160	1610.54
0	1000	60	1232.42	120	1460.68	180	1684.78
20	1077.94	80	1308.97	140	1535.84	200	1758.56

O	Туре	Range of application	Classes	$R_0(\Omega)$	Temperature range	Accuracy
REFERENCE SELECTION	Pt1000-SMD 1206-A		А	1000±0.06	0~+150°C	±(0.15+0.002 T)
	Pt1000-SMD 1206-B	-50~+200°C	В	1000±0.12	-50~+200°C	±(0.3+0.005 T)
	Pt1000-SMD 1206-2B		2B	1000±0.24	-50~+200°C	±(0.6+0.01 T)

Note *: the marked classes and temperature measurement accuracy refer to the IEC60751 standard. T is the measured temperature.